1、5人参加百分制考试,成绩总和为330分,已知5人都及格了,成绩均为整数且依据成绩排名无并列名次。
(1)求第一名最多得了多少分?
(2)求第三名最多得了多少分?
2、植树节来临之际,120人参加义务植树活动,共分成人数不等且每组不少于10人的六个小组,每人只能参加一个小组,则参加人数第二多的小组最多有( )人?
A.34 B.35 C.36 D.37
1、中公解析:
(1)5个人的成绩总和一定,也就是和一定,让我们求解的是第一名最多多少分,求某一个量的最大值,满足和定最值问题的题型特征则为和定最值问题。根据我们的解题原则:“求某一个量的最大值,要让其他量尽可能小”,所以第一尽可能大,二到五名尽可能小,因为五个人都及格了,所以排在第五的人最少就是60分,同样排在第四的尽可能小,题干告诉我们成绩为整数且排名无并列,就说明第四尽可能与第五接近但是比第五大1即可,则为61,同理可得第三为62,第二为63,第一名并不知道可设为x,
那就可得五个人加和为330即x+63+62+61+60=330,x=84。
(2)第三名要想尽可能大,其他量可能小,所以排在第五的人最少就是60分,同样排在第四的则为61,第三是我们要求的不知道设为x,排在第二的尽可能小,也比第三大则为x+1,排在第一的尽可能小,也要比第二大为x+2。
x+2+x+1+x+61+60=330,x=68.7 因为所求为整数且最大,向下取整取68。
2、中公解析:和一定,要使第二多的小组人数尽量多,则其他小组的人数应尽可能少,设参加人数第二多的小组最多x人,如下:
x+1+x+13+12+11+10=120,x=36.5,因所求为整数,且为最多,故向下取整,即参加人数第二多的小组的人数最多有36人。